
Overview of DICOM and the open source ecosystem



Why use DICOM?

Universal standard for medical imaging

Don't lose data
Get all the details from the scanner

Well-defined representations with documentation



How to think about DICOM

Each "dataset" is an instance of a "class" with strongly typed instance variables
(called "elements")

Instances can be stored as files (called Part-10 files after the section of the
standard describing them)

Instances can be grouped when they share unique IDs

The sequence of instances are like a logfile of what the scanner generated and it's up
to the application to sort through them to determine the relationships and map them
into useful constructs like Volumes, Segmentations, etc.

To create DICOM instances the application populates the elements to link it with the
other instances as appropriate



Some of the more useful DICOM classes

Imaging: CT, MR, PET, US...
Orginal scan data

Segmentation: SEG
Image based labeling of structures

Structured Reporting: SR
Vector annotations, quantifications, qualitative findings

Radiotherapy: RT
Doses, plans, structures...

Parametric Maps: PM
Images with defined quantities and units

Spatial Registration: SRO
Linear and nonlinear with explicit frames of reference

Whole Slide Images: WSI
Microscopy images, possibly multichannel with annotations in SR



DICOM networking

DIMSE is tradional "PACS" networking used worldwide
Both endpoints need custom configuration

Best for use within controlled firewalls

DICOMweb is uses modern REST API concepts
Better suited to internet and security

Introduced JSON header encoding



DICOM Implementations: Java, C#

PixelMed toolkit, open source, but intended for reference not for community use

FairOaks

probably others...



DICOM Implementations: C++

GDCM: traditional implementation used in ITK

DCMTK: also widely used in ITK and many other places

CommonTK (CTK)
DCMTK + Qt * SQLite

Core of Slicer's DICOM module

dcmqi: convenience interface over DCMTK to support encoding of analysis results in
DICOM



DICOM Implementations: Python

pydicom
Widely used, bundled with Slicer

Maps instances to python objects and numpy arrays

pydicomnet
Implements DIMSE with pydicom

dicomweb-client
Implements DICOMweb with pydicom

highdicom (new)
Adds SEG, SR, etc on pydicom



DICOM Implementations: JavaScript

dicomParser, cornerstone, OHIF
Layers of the Open Health Imaging Foundation stack

dcmjs.org
dcmjs: maps instances to/from JavaScript classes
original: emscripten cross-compiled DCMTK

current: pure JavaScript (browser/server)

dicomweb-client/dicomweb-server: DICOMweb on dcmjs

dcmjs-dimse (new): DIMSE on dcmjs (server only)

Can be used in qSlicerWebWidget

http://dcmjs.org/


DICOM in Slicer

DICOM module supports local database and DIMSE networking

DICOM Plugins examine related instances to propose mappings to Slicer datatypes,
export Sicer data to DICOM

DICOMwebBrowser query/retrieve/store and support Google DICOMweb stores
securely

DICOM Plugins provided by SlicerRT, QuantitativeReporting, PET...



Summary

Supporting all of DICOM is a huge task

Community is very active tools are becoming very capable

Interoperability is improving
Slicer-generated segmentations in OHIF

OHIF structured report annotations in Slicer

highdicom encoded machine learning results in Slicer and OHIF


